Generic Constructions for Chosen-Ciphertext Secure Attribute Based Encryption

نویسندگان

  • Shota Yamada
  • Nuttapong Attrapadung
  • Goichiro Hanaoka
  • Noboru Kunihiro
چکیده

In this paper we propose generic conversions for transforming a chosen-plaintext (CPA) secure attribute-based encryption (ABE) to a chosen-ciphertext (CCA) secure ABE. The only known generic conversion, to the best of our knowledge, was presented by Goyal et al. in ACM-CCS 2006, which itself subsumes the well-known IBE-to-PKE conversion by Canetti, Halevi, and Katz proposed in Eurocrypt 2004. The method by Goyal et al. has some restrictions that it assumes the delegatability of the original ABE and can deal only with the key-policy type of ABE with large attribute universe. In contrast, our methodology is applicable also to those ABE schemes without known delegatability. Furthermore, it works for both key-policy or ciphertext-policy flavors of ABE and can deal with both small and large universe scheme. More precisely, our method assumes only either delegatability or a newly introduced property called verifiability of ABE. We then exhaustively check the verifiability of existing ABE schemes and found that most of them satisfy such a property, hence CCA-secure versions of these schemes can be obtained automatically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Chosen-Ciphertext Secure Attribute-Based Key Encapsulations without Random Oracles

We present a new technique to realize attribute-based encryption (ABE) schemes secure in the standard model against chosen-ciphertext attacks (CCA-secure). Our approach is to extend certain concrete chosen-plaintext secure (CPA-secure) ABE schemes to achieve more efficient constructions than the known generic constructions of CCA-secure ABE schemes. We restrict ourselves to the construction of ...

متن کامل

Chosen-Ciphertext Security of Multiple Encryption

Encryption of data using multiple, independent encryption schemes (“multiple encryption”) has been suggested in a variety of contexts, and can be used, for example, to protect against partial key exposure or cryptanalysis, or to enforce threshold access to data. Most prior work on this subject has focused on the security of multiple encryption against chosen-plaintext attacks, and has shown con...

متن کامل

Attribute-Based Authenticated Key Exchange

We introduce the concept of attribute-based authenticated key exchange (AB-AKE) within the framework of ciphertext policy attribute-based systems. A notion of AKE-security for AB-AKE is presented based on the security models for group key exchange protocols and also taking into account the security requirements generally considered in the ciphertext policy attribute-based setting. We also exten...

متن کامل

Chosen-Ciphertext Security from Identity-Based Encryption

We propose simple and efficient CCA-secure public-key encryption schemes (i.e., schemes secure against adaptive chosen-ciphertext attacks) based on any identity-based encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a new paradigm for achieving CCA-security; this paradigm avoids “proofs of well-formedness” that hav...

متن کامل

GEM: A Generic Chosen-Ciphertext Secure Encryption Method

This paper proposes an efficient and provably secure transform to encrypt a message with any asymmetric one-way cryptosystem. The resulting scheme achieves adaptive chosen-ciphertext security in the random oracle model. Compared to previous known generic constructions (Bellare, Rogaway, Fujisaki, Okamoto, and Pointcheval), our embedding reduces the encryption size and/or speeds up the decryptio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011